Home » Research » HTSFilter paper published in Bioinformatics

HTSFilter paper published in Bioinformatics


Our paper describing a data-based filter for RNA-seq data for differential analyses using our R/Bioconductor package HTSFilter was recently published in Bioinformatics (doi: 10.1093/bioinformatics/btt350).

Abstract below…

Motivation: RNA sequencing is now widely performed to study differential expression among experimental conditions. As tests are performed on a large number of genes, very stringent false discovery rate control is required at the expense of detection power. Ad hoc filtering techniques are regularly used to moderate this correction by removing genes with low signal, with little attention paid to their impact on downstream analyses.

Results: We propose a data-driven method based on the Jaccard similarity index to calculate a filtering threshold for replicated RNA-seq data. In comparisons with alternative data filters regularly used in practice, we demonstrate the effectiveness of our proposed method to correctly filter lowly expressed genes, leading to increased detection power for moderately to highly expressed genes. Interestingly, this data-driven threshold varies among experiments, highlighting the interest of the method proposed here.

Availability: The proposed filtering method is implemented in the R package HTSFilter available on Bioconductor.

Jaccard similarity index


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: